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6 Abstract Numerical models are often used to simulate estuarine physics and water quality under scenarios 

7 of future climate conditions. However, representing the wide range of uncertainty about future climate 

8 often requires an infeasible number of computationally expensive model simulations. Here, we develop and 

9 test a computationally inexpensive statistical model, or metamodel, as a surrogate for numerical model 

10 simulations. We show that a metamodel fit using only 12 numerical model simulations of Chesapeake 

11 Bay can accurately predict the early summer mean salinity, stratification, and circulation simulated by 

12 the numerical model given the input sea level, winter–spring streamflow, and tidal amplitude along the 

13 shelf. We then use this metamodel to simulate summer salinity and circulation under sampled probability 

14 distributions of projected future mean sea level, streamflow, and tidal amplitudes. The simulations from the 

15 metamodel show that future salinity, stratification, and circulation are all likely to be higher than present-

16 day averages. We also use the metamodel to quantify how uncertainty about the model inputs transfers 

17 to uncertainty in the output and find that the model projections of salinity and stratification are highly 

18 sensitive to uncertainty about future tidal amplitudes along the shelf. This study shows that metamodels 

19 are a promising approach for robustly estimating the impacts of future climate change on estuaries. 

20 Keywords emulator · metamodel · Chesapeake Bay · climate change · sensitivity analysis · uncertainty 

21 analysis 

22 1 Introduction 

23 Climate change is likely to produce changes in the temperature, salinity, circulation, and water quality of 

24 estuaries and other coastal environments, and it is important to understand what effects these changes 

25 will have and whether current practices to manage water quality and the health of estuarine ecosystems 
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26 are robust against future changes. Because future climate change is difficult to predict, as a result of a 

27 myriad of uncertainties including future emissions of greenhouse gases and climate sensitivity, accounting 

28 for uncertainty when predicting the impacts of climate change on estuaries and evaluating management 

29 strategies is essential. However, most studies on the effects of climate change on estuaries have not accounted 

30 for the many sources of uncertainty present nor have they robustly quantified the uncertainty and its greatest 

31 sources in their assessments. 

32 Many studies have used model simulations to predict the effects of sea-level rise (SLR), and most have 

33 used multiple plausible values of SLR to attempt to account for uncertainty. For example, Hong and Shen 

34 (2012) and Rice et al. (2012) modeled changes in Chesapeake Bay salinity, stratification, and circulation 

35 under three different SLR scenarios and found that SLR caused increased salinity and stratification. Chua 

36 and Xu (2014) obtained similar results in their numerical model of San Francisco Bay. Hilton et al. (2008) 

37 also predicted increased salinity in Chesapeake Bay as a result of SLR using both a statistical and a numer-

38 ical model, Huang et al. (2015) found that sea-level rise increased salinity in their model of Apalachicola 

39 Bay, and Mulamba et al. (2019) found that sea-level rise caused a nonlinear increase in salinity in their 

40 model of the St. Johns River. Lee et al. (2017) and Ross et al. (2017) found that sea-level rise changed 

41 modeled tidal amplitudes and phases in Chesapeake and Delaware Bays, and similarly Ralston et al. (2018) 

42 and Ralston and Geyer (2019) found that increased depth from dredging increased tidal range, salinity, and 

43 stratification in the Hudson River estuary. A few studies have also examined the effects of changing river 

44 discharge: Gibson and Najjar (2000) and Muhling et al. (2018) used statistical models to project changes 

45 in mean salinity in Chesapeake Bay under different scenarios derived from climate model output. They 

46 found that model uncertainty, i.e., differences in projected regional changes of temperature and precipita-

47 tion between climate models, produced uncertainty in future river discharge, which subsequently produced 

48 uncertainty about future salinity. 

49 The previously cited studies have not accounted for many of the sources of uncertainty that are present 

50 in the climate system and in the models used, and they also did not quantify the uncertainty that they 

51 did include. Some of the studies simulated conditions under only a few climate scenarios, in part due to 

52 the computational costs of running numerical model simulations (e.g., well over 100 simulations would be 

53 required to replicate the combined greenhouse gas and model uncertainty in the CMIP5 climate model 

54 dataset). Others of the cited studies have examined how the numerical or statistical model output varies 

55 under different levels of only one factor, such as mean sea level (which is simple to perturb). However, this 

56 method ignores the large amount of uncertainty that may be contributed by other factors, such as changing 

57 streamflow, as well as possible interactions between factors. Most studies using this one-factor method also 

58 did not specifically quantify the uncertainty about the chosen input and the resulting uncertainty in the 

59 output. Finally, most studies have ignored structural and parametric uncertainty in their estuary models; 

60 ignoring this uncertainty could be particularly problematic for biogeochemical models that contain large 

61 numbers of uncertain parameters (Hemmings et al., 2015). 
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62 A sensitivity and uncertainty analysis is a useful tool for understanding how uncertain the model 

63 output is (uncertainty analysis), as well as how and which uncertain model inputs are responsible for the 

64 uncertainty in the model output (sensitivity analysis) (Saltelli et al., 2004). Many practitioners consider 

65 a sensitivity and uncertainty analysis to be an essential step in the model development and application 

66 process (Jakeman et al., 2006; Sin et al., 2009). In this study, we conduct a variance-based sensitivity 

67 analysis that determines the contributions of the diverse model inputs to the variance in the model output. 

68 If a model input parameter, which is variable in accordance with a specified probability distribution that 

69 represents uncertainty about the parameter, produces a large amount of variance in the model output, 

70 the model is considered to be sensitive to the parameter. Because sensitivity analysis identifies the input 

71 parameters that have the strongest influence on the model output, it has many potential uses including 

72 simplifying the model and identifying important areas for future research (Saltelli et al., 2008). However, 

73 we are aware of only one study that conducted a quantitative sensitivity analysis on a coastal or estuarine 

74 model (Mattern et al., 2013). One reason may be that methods for sensitivity analysis commonly require 

75 many numerical model simulations and are infeasible for computationally expensive ocean models. 

76 In other fields of study, computationally inexpensive statistical models have been applied as tools to 

77 analyze the sensitivity and uncertainty of large, computationally expensive numerical models. The statistical 

78 model, or metamodel or emulator, is fit (or trained) using a limited number of numerical model simulations, 

79 and predictions from the statistical model are used to obtain the large number of data points required for 

80 a proper sensitivity and uncertainty analysis. Pioneering work in this field was conducted by Sacks et al. 

81 (1989), and useful reviews of metamodels and applications to sensitivity and uncertainty analysis are 

82 available in Saltelli et al. (2008), Storlie et al. (2009), and Iooss and Lemâıtre (2015). Climate modeling 

83 is one particular field that has widely made use of metamodels. For example, Holden et al. (2010) used 

84 a metamodel to calibrate and analyze the sensitivity of an intermediate complexity model, Schleussner 

85 et al. (2011) developed a metamodel to analyze the uncertainty surrounding projections of a decline in the 

86 Atlantic Meridional Overturning Circulation, and Castruccio et al. (2014) used a metamodel to emulate 

87 model temperature and precipitation timeseries under different CO2 concentration trajectories. Metamodels 

88 have also been used in several studies of coastal and estuarine systems, although none of these studies 

89 examined the effects of future climate change. Chen et al. (2018) used artificial neural networks (ANNs) 

90 as metamodels to predict salinity and hydrodynamics in San Francisco Bay. van der Merwe et al. (2007) 

91 also used an ANN to predict hydrodynamics in the Columbia River estuary. Mattern et al. (2013) used 

92 a polynomial chaos expansion, a metamodel method, to analyze the sensitivity and uncertainty of model 

93 predictions of hypoxia in the northern Gulf of Mexico. Parker et al. (2019) used Gaussian process regression 

94 to predict water levels in an estuary. 

95 There are a few drawbacks to some of the previous methods used to emulate model simulations of 

96 estuarine hydrodynamics and biogeochemistry. Due to the large number of parameters involved in an 

97 artificial neural network, an ANN is commonly considered to be a “black box” approach—it is difficult 

98 to glean an understanding of the natural system from the ANN model fit. ANNs are also particularly 
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99 vulnerable to overfitting, which results in deceptively high prediction skill when given the input values 

100 used to train the model and exceedingly low skill and the inability to generalize when given other values 

101 (Razavi et al., 2012). A large number of training simulations may be needed to fit a metamodel using 

102 the polynomial chaos expansion approach—for example, Mattern et al. (2013) noted that the number of 

103 required simulations scales as an exponential function of the number of inputs, and as a result the authors 

104 fit a separate metamodel for each of the input parameters. Although Mattern et al. (2013) did conduct a 

105 sensitivity and uncertainty analysis using their metamodel, because they fit a separate metamodel to each 

106 input parameter, they were not able to include the effect of interactions between the input parameters. 

107 Chen et al. (2018), van der Merwe et al. (2007), and Parker et al. (2019) did not use their metamodels to 

108 conduct a sensitivity and uncertainty analysis and instead focused primarily on evaluating the accuracy of 

109 the metamodel predictions and on the computational time saved. 

110 In this study, we examine the use of Gaussian process (GP) regression as a computationally inexpensive 

111 way to emulate climate change simulations from a computationally expensive numerical estuary model 

112 and to conduct a sensitivity and uncertainty analysis. Compared to other metamodel approaches that 

113 have been applied to coastal and estuarine systems, a Gaussian process metamodel has fewer parameters 

114 and the meanings of these parameters are more straightforward, which makes the GP metamodel more 

115 interpretable and requires fewer expensive training simulations. Furthermore, oceanographers may find 

116 GP metamodels to be especially intuitive as they are analogous to the kriging routines commonly used to 

117 interpolate oceanographic observations. To test this approach, we analyze the sensitivity and uncertainty of 

118 future salinity and circulation in Chesapeake Bay. We present a simple test case that focuses on salinity and 

119 circulation in the summer, when hypoxia is prevalent in the bay, and that considers only three exogenous 

120 variables that are known to affect salinity and circulation and that may change in the future: mean sea 

121 level, average streamflow between January and May, and the amplitude of tides along the ocean boundary. 

122 The objective is to determine how sensitive circulation and salinity projections are to these three variables 

123 and how uncertain future salinity and circulation values are. Although we begin with a relatively simple 

124 case, these results may be relevant for future studies that may account for a larger number of uncertain 

125 factors and consider more complex model outcomes, such as the size and duration of hypoxic conditions. 

126 2 Methods 

127 2.1 Numerical model 

128 Numerical model simulations were performed using the Finite Volume Coastal Ocean Model (FVCOM) 

129 (Chen et al., 2003, 2006). Most aspects of the model configuration, including the horizontal mesh, vertical 

130 discretization, bathymetry, and physics options are identical to those described in more detail by Ross 

131 et al. (2017). Briefly, the model domain covers both Chesapeake and Delaware Bays and the adjacent 

132 Mid-Atlantic Bight, although this paper focuses only on results from Chesapeake Bay (Figure 1). The 
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133 numerical model uses the vertical wall assumption: sea-level rise does not inundate low-lying land. The 

134 model uses ocean boundary conditions from the Hybrid Coordinate Ocean Model (HYCOM) reanalysis 

135 (Chassignet et al., 2003, 2007) along with tidal boundary conditions from the Oregon State University 

136 TOPEX/Poseidon Global Inverse Solution tide model (TPXO8) (Egbert et al., 1994; Egbert and Erofeeva, 

137 2002). Atmospheric wind, radiation, and heat flux forcing are obtained from the North American Regional 

138 Reanalysis (NARR) (Mesinger et al., 2006). Freshwater inflows and associated temperatures are determined 

139 from U.S. Geological Survey observations for ten rivers, eight of which discharge to the Chesapeake Bay. 
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Fig. 1 Map of the Chesapeake and Delaware Bay portion of the numerical model domain. Colors show the bathymetry 
of the numerical model. Dots and text show the locations of the 11 selected observation sites in the mesohaline region of 
Chesapeake Bay. 

140 The modeling strategy in this study is to configure the numerical model to approximately simulate 

141 “typical” conditions, then see how these conditions change as factors for mean sea level, tidal amplitude, 

142 and river discharge are changed. To simulate typical conditions, freshwater discharge for each river was 

143 input using a smoothed monthly mean climatology derived from observations during years 1991 to 2000, 

144 which was identified by U.S. Environmental Protection Agency (2010) to be a period of typical hydrological 

145 conditions. For atmospheric forcing, the relationship between circulation and wind speed in Chesapeake 

146 Bay is nonmonotonic with varying directional and time dependence (Section 4.2), so winds cannot be 

147 averaged like river discharge. Instead, to obtain a simulation representative of typical conditions, year 2009 

148 was selected as the source of time-varying atmospheric forcing. 2009 appears to be a typical year from a 
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149 meteorological perspective; for example, it is the most recent year in which May-June average NARR wind 

150 speed and air temperature over the bay were both within 0.5 standard deviations from the 20-year (1999 

151 to 2018) mean. All other aspects of the model configuration are identical to the model used in Ross et al. 

152 (2017). 

153 The model was first used to simulate years 2008 (to spinup) and 2009 (to evaluate the reproduction 

154 of climatological conditions). Then, we ran a series of 13 strategically chosen simulations that represent 

155 potential realizations of future conditions. 

156 2.2 Uncertainty and projected changes in streamflow, sea level, and tidal range 

157 To simulate the effects of uncertain future conditions, numerical model experiments were performed by 

158 repeating the year 2009 simulation with perturbations applied to three model forcing variables that affect 

159 salinity and circulation and that may change in the future: mean sea level, tidal boundary conditions, and 

160 streamflow. For this simple test case, we neglect changes in wind and other factors that may also change 

161 salinity and circulation in the future (Section 4.2). Our results will thus underestimate uncertainty, but 

162 will still capture the effects and associated uncertainty of three major drivers of salinity and circulation 

163 and provide a framework for including additional factors in future work. All perturbations were uniformly 

164 spread across the range of values that could plausibly be experienced in the year 2050. Perturbations to sea 

165 level and streamflow assume that the high Representative Concentration Pathway (RCP) 8.5 greenhouse 

166 gas emissions scenario (Riahi et al., 2011) is realized, although conditions under other emissions scenarios 

167 are similar in this region in 2050. In all parts of this study, we neglect any correlation between the three 

168 exogenous parameters. Although the parameters are likely correlated to some extent, for example sea level 

169 and streamflow change will have some correlation due to temperature dependence, uncertainty for each 

170 parameter is also driven by different factors, such as regional oceanographic variability and Antarctic ice 

171 sheet contributions for SLR (Kopp et al., 2014) and precipitation parameterizations and internal variability 

172 for streamflow change. Similarly, as discussed later in this section, boundary tidal amplitude may also have 

173 some correlation with SLR, but we are assuming that uncertainty about the magnitude and direction of 

174 the changes represented by the boundary amplitude is significantly greater than the uncertainty due to 

175 correlation with uncertain SLR. Accounting for correlations between parameters is also beyond the scope 

176 of this study. 

177 Plausible ranges of sea-level rise were obtained from the supplementary material of Kopp et al. (2014). 

178 We designed the model experiments to cover the plausible ranges for all locations within the model domain, 

179 which range from −8 cm to +101 cm. We note that we have neglected deep uncertainty about future sea 

180 level; i.e., we consider that the Kopp et al. (2014) probability density is the actual, correct PDF of future 

181 sea level. Kopp et al. (2014) also neglected some uncertainty surrounding the response of the Antarctic ice 

182 sheet to climate change (DeConto and Pollard, 2016), but we avoided most of this uncertainty by focusing 
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183 on sea level in 2050 rather than in later periods when uncertainty is larger (Bakker et al., 2017; Kopp et al., 

184 2017). We are also assuming that SLR is uniform over the model domain, as in Ross et al. (2017). 

185 Uncertainty about future freshwater inflow into the bay was represented by perturbing the mean stream-

186 flow between January and May, because January to May flow has a strong correlation with summertime 

187 stratification and hypoxia (Murphy et al., 2011). A rough estimate of plausible values was obtained by 

188 examining the range of 29 climate and hydrological model simulations of streamflow from the Susquehanna 

189 River produced by the U.S. Bureau of Reclamation (Brekke et al., 2013, 2014). From these results, we 

190 estimated that plausible future values could range from 8% lower to 38% higher. Additional information is 

191 provided in the supporting information (Section S2). This -8% to +38% range also generally encompasses 

192 ranges for January-May streamflow change for the Susquehanna River simulated by other models (Irby 

193 et al., 2018; Johnson et al., 2012; Seong et al., 2018). The same perturbation was applied to all ten of the 

194 rivers in the model; this is a reasonable assumption since projected changes are fairly similar in all of the 

195 Chesapeake Bay tributaries, and applying a separate change to each tributary would greatly increase the 

196 number of model runs necessary and introduce highly correlated inputs. 

197 Most of the climate and hydrological models project that the largest percent changes in streamflow 

198 will occur in January and February with a gradual decrease in the change towards May. This result is 

199 consistent with projections of large precipitation increases in winter and the increasing importance of 

200 evapotranspiration in warmer months (Najjar et al., 2009). To represent the time dependence of change, 

201 each perturbation was applied by multiplying the daily river discharge in the control experiment by a time 

202 series of scaling factors. The scaling factors were created by setting a factor of one at the end of May 

203 31, assuming a linear trend in the scaling factor from January through May, and finding the appropriate 

204 starting value such that the desired overall perturbation to the January–May average was applied. 

205 The final uncertain parameter we considered was boundary tidal amplitude. It is important to note that 

206 some changes in tides due to sea-level rise are simulated by the numerical model, and the effects of these 

207 changes on salinity and circulation would be accounted for as part of the sensitivity to sea level. However, 

208 other changes in tides, such as those caused by basin-scale trends or estuary-shelf-ocean feedbacks, are not 

209 included in the model and need to be accounted for as uncertainty in the tidal boundary condition forcing. 

210 We also used the tidal boundary condition uncertainty to account for uncertainty about the actual impact 

211 of future SLR on changing tides in the bay. 

212 The amplitudes of tidal harmonic constituents in an estuary may vary for several reasons, including sea-

213 level rise and feedbacks between the estuary, continental shelf, and open ocean; changes in stratification and 

214 internal tides; and changes in the radiational component of solar tides. Woodworth (2010), Müller (2012), 

215 Devlin et al. (2018), Talke and Jay (2020), and Haigh et al. (2020) provide more detailed discussions and 

216 additional references. Observations of tidal amplitudes in the study region do in fact contain a variety of 

217 trends, and Ross et al. (2017) found that many of the trends were caused by rising sea levels and could 

218 be simulated by the numerical model used in this study. However, Ross et al. (2017) also found trends 

219 in the observations that are apparently unrelated to sea-level rise and are not simulated by the model; 
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220 they found an average background trend (the trend after subtracting the modeled effect of sea-level rise) 

221 of −7.88% century−1 in the amplitude of the principal lunar semidiurnal component of the tides (M2) and 

222 a background trend of −10.05% century−1 in the amplitude of the principal solar semidiurnal component 

223 (S2). Although Ross et al. (2017) projected that SLR would increase tidal amplitude in many parts of 

224 Chesapeake Bay, global tide model simulations by Schindelegger et al. (2018) predicted that SLR would 

225 decrease M2 amplitude along the majority of the U.S. East Coast. Without accounting for the effect of 

226 SLR, Ray (2009) and Müller et al. (2011) found similar negative S2 amplitude trends at nearly all of the 

227 Atlantic Coast sites in their studies. However, Ray (2009) and Müller et al. (2011) found mainly positive 

228 M2 amplitude trends, and Devlin et al. (2018) found an overall positive correlation between increased sea 

229 level and observed tidal amplitudes at many stations in Chesapeake Bay and surrounding region, although 

230 increased sea level lowered tidal amplitudes at some stations in the region and along the US East Coast. 

231 In addition to uncertainty about observed tidal trends and whether they have been caused by SLR, 

232 there is also uncertainty about whether numerical models can properly simulate the effects of future SLR on 

233 tides. The numerical model configuration in this study does not include wetting and drying and inundation 

234 of shorelines as sea level rises. Although the model is capable of reproducing historical tides and changes 

235 without these features (Ross et al., 2017), the potential for inundation becomes substantial with higher 

236 sea-level rise amounts, and with these effects included the numerical model predicts a nearly opposite effect 

237 of sea-level rise on tidal amplitudes in Chesapeake Bay (Lee et al., 2017). Additionally, because tides are 

238 specified along the boundary, the model does not capture potential basin-scale changes or feedbacks between 

239 tides in the estuary, shelf, and open ocean. As a result, sea level rise produces negligible changes in tides 

240 along the shelf and open ocean in the numerical model used in this study (Ross et al., 2017). However, 

241 global model simulations do predict shelf- and basin-scale changes in tides in response to SLR that could 

242 propagate to the coastal region and Chesapeake Bay (Pickering et al., 2017; Schindelegger et al., 2018). 

243 To account for uncertainty about historical tidal trends and whether these trends will continue into the 

244 future, and whether rising sea-levels will produce changes in tides that are not simulated by the numerical 

245 model, model simulations were conducted with the amplitudes of all constituents used to generate the tidal 

246 boundary conditions perturbed within a range of ±10%. 

247 2.3 Experimental design, model output, and evaluation 

248 After choosing plausible ranges for the three numerical model input parameters, the model was evaluated 

249 at a total of 12 points within the parameter space. The numerical model simulations consisted of an initial 

250 set of 9 experiments chosen using a stratified Latin hypercube sample optimized to cover the parameter 

251 space uniformly (Pleming and Manteufel, 2005; Damblin et al., 2013) followed by 4 additional simulations 

252 to take advantage of remaining computational resources (Figure 2). One of these 13 model runs using large 

253 values for both tidal amplitude scale and SLR encountered a numerical instability and was removed from 
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254 the remainder of the study, leaving a total of 12 model runs, or 4 times the number of uncertain input 

255 parameters. 
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Fig. 2 Points in streamflow scale, tidal amplitude scale, and sea-level rise space where numerical model simulations were 
run. The unfilled circle indicates a simulation that failed. 

256 We calculated four metrics from the numerical model output: mean salinity, vertical and horizontal 

257 salinity differences, and the estuarine exchange velocity. Mean salinity is simply vertically averaged salinity. 

258 The vertical salinity difference, or stratification, is the difference between the topmost and bottommost 

259 model layers. The horizontal salinity difference is the difference in column-mean salinity between the two 

260 stations bounding the mesohaline region of the bay (stations 3.2 and 5.5 in Figure 1). The horizontal 

261 difference is a strong proxy for the mean horizontal salinity gradient in the central bay region (the correlation 

262 coefficient between the summer mean difference and the gradient determined using linear regression is 0.99 
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263 over the 12 model runs), but the difference is simpler to compute and more intuitive than the gradient. The 

264 exchange velocity was defined following Chant et al. (2018) as half of the shear of the low-passed longitudinal 

265 velocity. We chose these metrics because they provide overall measures of estuarine hydrodynamics and 

266 have been examined in other theoretical and modeling studies (Section 4.1), and because they are also 

267 related to the health of the estuarine ecosystem. For example, mean salinity controls the ranges of oyster 

268 habitat and diseases (Kimmel et al., 2014), and high salinity stratification produces hypoxia by reducing 

269 downward mixing of oxygenated water (Officer et al., 1984). 

270 All four metrics were calculated at the model output resolution (hourly) for the model points closest 

271 to the chosen Chesapeake Bay Program (CBP) water quality database observation stations located in the 

272 mesohaline region where stratification and hypoxia often occur (Figure 1). The metrics were averaged over 

273 the 11 stations and over the 59-day period (two lunar months) from May 1 through June 28, a period when 

274 stratification is common and hypoxic conditions typically develop. 

275 Finally, the year 2009 control simulation from the numerical model was evaluated by calculating the 

276 same four metrics for all observations in the water quality database at the 11 stations. For vertical salinity 

277 difference, the measurements closest to the surface and bottom from each vertical profile were used; mea-

278 surements typically began 1 m below the surface and were taken at 1 m intervals. Metrics were calculated 

279 and averaged separately for each 59-day period (May 1 through June 28) during 1984 to 2017 to obtain 

280 rough estimates of the climatological probability distribution of each metric. The water quality database 

281 does not include observations of velocity, so the exchange velocity metric could not be evaluated. 

282 2.4 Metamodel 

283 After running the numerical model at the chosen design points, Gaussian process (GP) metamodels were 

284 fit to the model output metrics and used to create the large number of model simulations required for the 

285 sensitivity and uncertainty analysis. GP metamodels are analogous to the kriging methods commonly used 

286 to interpolate irregularly spaced oceanographic observations; the idea is to use kriging to interpolate the 

287 model output from the design points to any number of other points. 

288 The Gaussian process metamodel assumes that the numerical model output Y evaluated at points x in 

289 model parameter space can be represented as a Gaussian process, a finite set of random variables with a 

290 joint Gaussian distribution (Rasmussen and Williams, 2006), that is defined by a mean function m and a 

291 covariance function c: 

292 Y(x) ∼ GP (m(x), c(xi, xj )) . (1) 

293 After using a small set of numerical model simulations to learn the parameters for the mean and covariance 

294 functions, the Gaussian process can be used to predict values of the numerical model output at new points 

295 in the numerical model parameter space by combining the mean function at the new points with the 

296 covariance between the output at the new points and the output at the training points. A short summary 
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297 of the mathematical details of the Gaussian process metamodel is provided in Appendix A, and we refer 

298 the reader to Rasmussen and Williams (2006) and Roustant et al. (2012) for further details. 

299 A separate GP model was fit to each of the four output variables of interest (Section 2.3). All models 

300 were fit using the DiceKriging package for R (Roustant et al., 2012). The mean function for the models 

301 for vertical salinity difference and exchange velocity was a constant value. We included a constant value 

302 plus linear trend terms in the mean function for the other two models: the model for mean salinity, which 

303 we justify based on previous studies finding roughly linear sensitivity to mean sea level (Hilton et al., 

304 2008; Hong and Shen, 2012) and on our interest in estimating the linear sensitivity, and the model for 

305 the horizontal salinity difference, which we justify based on expected sensitivity to all of the model inputs 

306 (Section 4.1). For nearly all models, using a linear trend or only a constant value produced similar skill 

307 in the cross-validation evaluation (discussed next). The only exception was the model for the horizontal 

308 salinity difference, which obtained a poor fit to the numerical model without a linear trend term. All models 

309 used a squared exponential as the covariance function, which parameterizes the covariance as a combination 

310 of an overall process variance and a separate length scale for each input parameter (Appendix A). 

311 Overall, the metamodels for the vertical salinity difference and exchange velocity had a total of five 

312 parameters that needed to be estimated: the constant mean, the process variance, and the three covariance 

313 length scales (one for each of the predictor variables—SLR, tidal amplitude scale, and streamflow scale). 

314 The metamodels for mean salinity and horizontal salinity difference also included a linear trend term for 

315 each of three predictor variables, bringing the total to eight estimated parameters. 

316 Compared to the amount of data used to fit the metamodel (12 simulations), the number of estimated 

317 parameters in the metamodels is large. Larger simulation sizes, on the order of 10 times the number of 

318 inputs, are typically considered optimal for fitting metamodels with more inputs than the three used in 

319 this study (Loeppky et al., 2009). To verify that predictive skill was obtained with a smaller experimental 

320 design, as well as to ensure that the metamodels were not overfit to the data (i.e., that the metamodels 

321 have not merely “memorized” the data but have actually learned the relationship between the inputs and 

322 output), we evaluated the predictive capability of the metamodels by applying cross-validation. Cross-

323 validation methods are commonly used in statistical modeling and machine learning studies to estimate 

324 the error of a model when predicting new data (versus the residual error of a model, which is the error 

325 of the model when predicting using the same data that was used to fit the model). These methods work 

326 by repeatedly (1) splitting a dataset into “training” and “testing” partitions, (2) fitting a model using the 

327 training dataset, (3) generating new predictions using the fitted model and the testing dataset, and (4) 

328 calculating an error measure from the difference between the predicted and actual values in the testing 

329 dataset. The average of the error measure over a number of cross-validation iterations provides an estimate 

330 of the predictive error, and large predictive errors indicate a model that is poor and may be overfitting. 

331 For GP models, cross-validation is particularly useful for assessing the predictive ability because the GP 

332 predictions perfectly interpolate the training data and the residual error is zero (Marrel et al., 2008). 
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333 In this study, we used leave-one-out cross-validation, where only one data point at a time is used in the 

334 test dataset and the model is fit to all of the remaining data. The coefficients for the trend term(s) in each 

335 metamodel were reestimated during each cross-validation iteration, which improves the error estimates for 

336 small sample sizes (Roustant et al., 2012). The covariance parameters were also reestimated. The cross-

337 validation results were evaluated graphically and by computing the Nash-Sutcliffe efficiency (Nash and 

338 Sutcliffe, 1970): � �2Pn 
Yi − Ŷii=12 

339 Q = 1 − P � �2 (2)
n 
i=1 Y − Yi 

ˆ340 where Yi is the value simulated by the numerical model, Y is the mean numerical model value, and Yi is 

341 the metamodel prediction. We also calculated the mean absolute error: 

nX1 ˆ342 MAE = Yi − Yi . (3) 
n 

i=1 

343 2.5 Sensitivity and uncertainty analysis 

344 The metamodels were used to analyze the sensitivity of the numerical model to the three uncertain parame-

345 ters. We calculated Sobol’ indices for the first-order and total effects using the methods described in Jansen 

346 (1999), Saltelli et al. (2010), and Le Gratiet et al. (2014). Sobol’ indices are based on a decomposition of 

347 the variance of the model output into additive functions of the model input. The first-order Sobol’ index is 

348 defined as � � 
VXi EX−i (Y |Xi) 

349 Si = (4)
V (Y ) 

350 and the total effect index as 
EX−i (VXi (Y |X−i)) 

351 STi = . (5)
V (Y ) 

352 Y |Xi denotes the model output with factor i fixed, and the function EX−i gives the expected value over all 

353 values of the factors that are not fixed. Finally, the function V gives the variance. Therefore, for a given 

354 factor, the first-order index gives the fraction of the output variance that would remain if the factor i was 

355 exactly known, while the total index gives the fraction of variance that would remain if all factors except 

356 factor i were known (Saltelli et al., 2010). The presence of interactions with other factors is indicated by 

357 total indices that are greater than first-order indices (or a sum of first-order indices that is less than 1). 

358 Given the small number of parameters in the model used in this study, it would also be feasible to compute 

359 all of the intermediate-order indices to precisely determine interactions. However, the results will show that 

360 all interactions are negligible. Following Le Gratiet et al. (2014), the Sobol’ indices were calculated from 

361 the metamodel output and bootstrapping was used to determine uncertainty. The Sobol’ index calculation 

362 used a Monte Carlo approach with metamodel predictions at 216 points in predictor (SLR–tidal amplitude 

363 scale–streamflow scale) space along with 100 random samples of the metamodel uncertainty at each point 
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364 and 100 bootstrap samples to determine the uncertainty due to numerical integration. Justification for 

365 using 216 points is provided in the Supporting Information (Section S4). 

366 The sensitivity and uncertainty analysis requires specifying the probability distributions for each of the 

367 factors being analyzed. We based these probability distributions (Figure 3) on the same information used 

368 to assess the plausible ranges of future values. The PDF for future sea level rise, which was derived from the 

369 Kopp et al. (2014) values for the Sewells Point location, was a truncated Gaussian distribution with a mean 

2 
370 of 43.90 cm, variance of 10.862 cm , and truncations at 3 and 101 cm. The PDF for streamflow change 

371 was specified using a triangular distribution over the −8% to +38% plausible range. This distribution is 

372 a simple approximation that captures our expectation that future streamflow change is more likely to be 

373 near the center of the plausible range than near either tail. For the same reason, we also used a triangular 

374 distribution to represent uncertainty about future tidal amplitudes. Although the distribution for tidal 

375 amplitude spans the ±10% plausible range, 75% of the probability is contained within ±5%. 
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Fig. 3 Probability density (left panels) and cumulative distribution (right panels) functions used in the sensitivity and 
uncertainty analysis. 
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376 3 Results 

377 3.1 Numerical model control simulation and evaluation 

378 The control run of the numerical model successfully reproduces historical mean salinities (Figure 4); both the 

379 mean and mode of the observations are close to the numerical model value. The vertical salinity difference 

380 is not simulated as well, with the model value being slightly lower than the range of observed values. This 

381 under-prediction of stratification is a common problem in numerical models of Chesapeake Bay (Li et al., 

382 2005; Irby et al., 2016). Some of the error in the vertical salinity difference may also be a result of errors in 

383 the model bathymetry. The numerical model horizontal salinity difference of 12.1 is larger than the largest 

384 historical value of 11.5, a bias that is also found in other models (Xu et al. (2012), cf. their Table 5). Overall, 

385 despite some biases, we consider the model simulations to be sufficiently realistic for the sensitivity and 

386 uncertainty analysis. Furthermore, as we are primarily interested in projecting future changes rather than 

387 exact future values, some error in the model historical simulation should not affect the results. 
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Fig. 4 Mean salinity and vertical and horizontal salinity differences averaged over the 11 selected Chesapeake Bay Program 
sites in central Chesapeake Bay (Figure 1) for the period between May 1 and June 28. Bars show histograms of the 
observations between 1984 and 2017, and dotted lines show the numerical model simulations. 

388 3.2 Metamodel results 

389 Cross-validation shows that the metamodels are capable of predicting the numerical model results with 

390 reasonable skill (Figure 5). For mean salinity and the vertical salinity difference, the efficiency coefficients 

391 Q2 are above 0.9, and the mean absolute errors (MAEs) are two orders of magnitude smaller than average 

392 values. The metamodel for salinity also accurately predicted a salinity value that was more than 1 unit 

393 below all other numerical model salinity values. Prediction skill is slightly lower but still reasonable for the 
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Fig. 5 Results from leave-one-out cross-validation of the metamodel. x-axis gives the values simulated by the numerical 
model. y-axis gives the metamodel prediction when the metamodel was fit to all other points. Solid lines correspond to a 
perfect match. 

394 exchange velocity: the MAE remains two orders of magnitude less than the mean value, but the Q2 metric 

395 is closer to 0.8. The skill metric is even lower for the horizontal salinity difference (0.586), although the 

396 positive skill and low MAE indicate that this model still has some predictive skill. The horizontal salinity 

397 difference may be more challenging to predict as it is determined by salinity at only two stations at opposite 

398 ends of the mesohaline region. Overall, the low errors for all variables indicate that despite being fit to only 

399 12 numerical model simulations, the metamodel is a reliable surrogate for the numerical model and can be 

400 used for the sensitivity and uncertainty analysis. 

401 Figure 6 shows how the metamodel predictions change when only one factor is varied and the other 

402 factors are fixed at their present-day values. Table S2 in the supporting information also provides the coef-

403 ficients of the trend terms in the metamodels. These results show that increased tidal amplitude produces 
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Fig. 6 Results from varying one factor with the other factors fixed at their present-day values. Solid lines denote the 
metamodel mean prediction, and shaded regions indicate the 95% confidence intervals. 

404 lower mean salinity and stratification. Higher streamflow lowers the mean salinity and increases the hori-

405 zontal salinity difference. The vertical salinity difference and estuarine circulation may also increase with 

406 streamflow. Sea-level rise produces a large increase in mean salinity and also increases the stratification 

407 and estuarine circulation. 

408 Tidal amplitude at the boundary is the largest source of uncertainty for mean salinity, vertical salinity 

409 difference, and exchange velocity (Figure 7), while streamflow dominates the sensitivity and uncertainty 

410 of the horizontal salinity difference. Projections for all four variables are at most weakly sensitive to mean 

411 sea level. It is important to note that this does not necessarily mean that changes in sea level have a small 

412 effect on the metamodel predictions or numerical model output; sea level actually has a fairly large effect 

413 on the metamodel predictions in Figure 6, but our uncertainty about future sea level is smaller than our 

414 uncertainty about future streamflow and tidal amplitudes (Figure 3), so the overall contribution of sea level 

415 to the uncertainty is relatively small. Figure 7 shows only the total-effect indices since the first-order effects 
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416 are essentially the same (Supporting Information Figure S1). This indicates that the interactions between 

417 tidal amplitude, mean sea level, and streamflow are negligible. 
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Fig. 7 Total effect Sobol’ indices for tidal amplitude, sea level, and January-May streamflow. The total effect index 
indicates the fraction of the variance (or the uncertainty) in the model output that would remain if all factors except the 
given factor were known (Section 2.5). Error bars indicate 95% confidence intervals. 

418 Given the probabilities for changes in tidal amplitude, streamflow, and sea level considered in this study, 

419 the salinity and circulation in Chesapeake Bay are likely to be different in 2050 (Figure 8). Increases in 

420 mean salinity, vertical salinity difference, and exchange circulation are all very likely, with more than 90% of 

421 metamodel predictions exceeding the present-day values. This certainty is consistent with our assumptions 

422 that mean sea level and streamflow are likely to increase in the future (Figure 3) and the metamodel-

423 predicted effects of increases in mean sea level and streamflow (Figure 6). On the other hand, the horizontal 

424 salinity difference is about as likely to increase as it is to decrease, which results from a balance between a 

425 larger difference caused by increased streamflow and a smaller difference caused by higher mean sea level. 

426 Figure 8 also highlights the challenges of representing uncertainty about future conditions with a limited 

427 number of numerical model simulations. For example, even though the 12 training model simulations we 

428 used were chosen to cover a wide range of uncertainty, 8.0% of the metamodel predictions of vertical salinity 

429 difference are below the lowest numerical model prediction (although some of this uncertainty also comes 

430 from the metamodel uncertainty). 

431 4 Discussion 

432 4.1 Consistency with previous studies and theory 

433 The results of our numerical model simulations and metamodel fits with varying values of mean sea level, 

434 streamflow, and tidal amplitude are broadly in agreement with expectations from analytical solutions for 

435 idealized estuaries and with results from observational and modeling studies of both Chesapeake Bay 
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436 and other estuaries. Although a complete investigation of the causes of the sensitivities revealed by the 

437 metamodels is beyond the scope of this study, in this section we compare our results with previous studies 

438 to verify that the metamodels have produced physically reasonable results. We compare our results with 

439 the classical analytical solutions for the central portion of an estuary at steady state derived by Hansen and 

440 Rattray (1965) and expanded and discussed by MacCready (1999), Monismith et al. (2002), MacCready and 

441 Geyer (2010), Geyer and MacCready (2014), and others. We also compare our results with the observational 

442 study of Newark Bay by Chant et al. (2018) and the observational and modeling study of the lower Hudson 

443 River Estuary by Ralston and Geyer (2019). 

444 In some idealized solutions, increasing depth has no effect on the exchange circulation, but it does 

445 decrease the horizontal salinity gradient (MacCready and Geyer, 2010; Chant et al., 2018). This theory 

446 is consistent with the modeling and observational results from Ralston and Geyer (2019), who found that 

447 SLR decreased the horizontal salinity gradient and caused a negligible increase in the exchange circulation. 

448 On the other hand, in observations of a different estuary Chant et al. (2018) found that SLR significantly 

449 increased the exchange circulation. They proposed that this effect is due to the short length of the estuary 

450 that they studied, which prevents the salinity field from completely adjusting to SLR and results in a 

451 salinity gradient that is constant or slightly increasing with SLR. 

452 Our results are broadly more consistent with Ralston and Geyer (2019): the metamodel fits indicate 

453 that SLR likely causes a decrease in the horizontal salinity gradient, but SLR also causes a small increase 

454 in the exchange circulation (Figure 6). It should be noted that metamodel uncertainty is higher for the 
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455 effect of SLR on the exchange circulation for SLR values above 0.75 m, and the uncertainty for the slope 

456 of the effect of SLR on the horizontal salinity gradient is also large. Ralston and Geyer (2019) note that 

457 the exchange circulation is theoretically proportional to salinity at the mouth S0 and river discharge Qr: 

� �1/3
2 βgS0Qr 

ue ≈ , (6)
3 W 

459 with β the saline contraction coefficient, g the gravitational acceleration, and W the width, but they 

1 
460 obtained a better fit to their idealized model simulations by replacing the leading coefficient with and3 

461 replacing S0 with the local salinity S(x). This scaling also provides a good fit to our model results. Using 

462 the January-May average streamflow for Qr and a width of 15 km, linear regression estimates the leading 

463 coefficient in Equation 6 to be 0.43, between 1/3 and 2/3. This fit has an R2 value of 0.84. When using a 

464 more general nonlinear least squares regression to also estimate the exponent in Equation 6, we obtain an 

465 estimated exponent of 0.63, closer to 2/3 rather than 1/3, and a leading coefficient of 0.78 with similarly 

466 small residual error. It should be noted that the width of the Chesapeake Bay varies significantly, and using 

467 other reasonable values for width changes the leading coefficient but not the overall goodness of the fit. 

468 The residuals from the first fit have a moderate correlation with mean sea level (R = 0.46), and including 

469 an additive sea level term in the linear regression model for Equation 6 results in a better fit (R2 = 0.89; 

470 R2 adjusted for degrees of freedom also increases) and reduces the leading coefficient to 0.36. 

471 We found that the vertical salinity difference increased slightly with higher mean sea level, a result 

472 contrary to classical theory but consistent with Ralston and Geyer (2019). However, similar to the case for 

473 exchange circulation, the metamodel uncertainty is higher for SLR above 0.75 m. Increased stratification 

474 in response to SLR has also been found in model simulations of Chesapeake Bay by Hong and Shen (2012) 

475 and San Francisco Bay by Chua and Xu (2014). 

476 Other aspects of our results are consistent with both idealized solutions and other modeling studies. In 

477 our metamodel simulations, SLR causes higher mean salinity at a rate of 2.31 m −1 (Figure 6; Table S2). 

478 Hilton et al. (2008) simulated summer salinity in the Chesapeake Bay using ROMS and found that the 

479 relationship between salinity and mean sea level in the central bay was about 2.5 m −1 . Also using a different 

480 model, Hong and Shen (2012) found a slightly weaker relationship between bay-average salinity and mean 

481 sea level of between 1.2 and 2.0 m −1 . Our model shows a linear scaling between mean salinity and sea level, 

482 whereas idealized solutions predict that the salt intrusion length and mean salinity are nonlinear functions 

483 of depth (MacCready, 1999; Hilton et al., 2008). However, we may not have explored a large enough sea 

484 level range to detect a nonlinear scaling. 

485 In our results, higher streamflow lowers the mean salinity and increases the horizontal and vertical 

486 salinity differences and the exchange circulation. This result is consistent with both classical solutions and 

487 Chant et al. (2018) and Ralston and Geyer (2019). Li et al. (2016) also obtained similar results in their 

488 numerical model simulations of Chesapeake Bay. Idealized solutions suggest that the salt intrusion length 

489 and the horizontal salinity gradient are proportional to Q−1/3 or Q−1/7 (Monismith et al., 2002; Ralston 
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490 et al., 2008), whereas our results show mean salinity and the horizontal salinity difference varying essentially 

491 linearly with streamflow. However, we simulated conditions following the spring freshet, and the majority 

492 of our simulations of projected climate change included even higher streamflow, so our results are primarily 

493 in the region where a nonlinear Q−1/3 or Q−1/7 dependence would appear to be nearly linear. In addition 

494 to being proportional to Q−1/3 , the length of salt intrusion is also proportional to the inverse of the average 

495 tidal velocity U−1 in idealized solutions (Monismith et al., 2002; Ralston and Geyer, 2019). Our finding oft 

496 a stronger sensitivity of mean salinity to tidal amplitude than to streamflow is consistent with this theory. 

497 Higher tidal amplitude is expected to produce greater mixing, but in classical approximations both the 

498 exchange circulation and stratification are not affected by mixing. This insensitivity occurs because although 

499 an increase in mixing does initially reduce the exchange circulation and stratification, the resulting weaker 

500 circulation increases the horizontal salinity gradient, and eventually balance is restored as the circulation 

501 and stratification return to their steady state values (MacCready and Geyer, 2010). Our results are nearly 

502 consistent with this theory: we found that higher amplitude reduced the mean salinity, may have increased 

503 the horizontal salinity difference (although metamodel uncertainty is high), and caused negligible changes 

504 in the exchange circulation. However, in our model, increasing the tidal amplitude significantly reduced the 

505 vertical salinity difference. 

506 4.2 Neglected climate factors and other uncertainties 

507 One limitation of the current study is that we have neglected the potential for future changes in typical 

508 wind speeds and directions. Wind speed and direction are increasingly being recognized as major factors 

509 controlling vertical stratification, circulation, and hypoxia in Chesapeake Bay (Scully, 2010a,b; Lee et al., 

510 2013; Du and Shen, 2015; Li et al., 2016; Scully, 2016). However, changes in wind speed and direction and 

511 their impacts are difficult to model. Winds can change rapidly in the study region, and the responses of 

512 stratification and hypoxia to changes in wind speed and direction in Chesapeake Bay are nonmonotonic and 

513 have varying time dependence (Li and Li, 2011; Xie and Li, 2018). As a result, it is necessary to force the 

514 numerical model with realistic time series of wind speed and direction; winds cannot be simply averaged 

515 like river discharge. Statistical methods could be used to produce stochastic wind speed time series with 

516 controllable mean speeds and directions; however, this could also significantly increase the number of ocean 

517 model simulations required due to the number of additional parameters introduced and the added random 

518 variability. 

519 Observations show that water temperatures in the Chesapeake Bay region have increased during the 

520 last century (Preston, 2004; Najjar et al., 2010; Ding and Elmore, 2015; Rice and Jastram, 2015), and this 

521 warming trend is likely to continue in the future as greenhouse gas concentrations and atmospheric temper-

522 atures also continue to increase. In the present study, we have neglected the impacts of rising temperatures 

523 on stratification under the assumption that any temperature changes would be fairly evenly distributed 

524 in the relatively shallow bay. However, observations by Preston (2004) do suggest that Chesapeake Bay 
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525 bottom water may be warming faster than surface water, so future work may benefit from including tem-

526 perature changes. Warmer water is also likely to have a significant impact on the bay ecosystem (Najjar 

527 et al., 2010; Muhling et al., 2018) and should be included in future work to model these impacts. 

528 The present study has also neglected model structural uncertainty, which could be a large source of 

529 uncertainty, particularly in cases of high sea-level rise. Lee et al. (2017) showed that modeled changes 

530 in tides in Chesapeake and Delaware Bays depend significantly on whether or not the numerical model 

531 allows low-lying land to be inundated as sea level rises. Vertical stratification may also depend on the 

532 parameterization used to model turbulent mixing, although Li et al. (2005) found that parameterization 

533 choice had only a minor impact on simulation of Chesapeake Bay stratification. 

534 Finally, uncertainty about parameters in the numerical ocean model is also ignored in the present 

535 study. Parameters that may be worth considering in future studies include the background vertical mixing 

536 coefficient (studied by Li et al. (2005)) and the bottom roughness length. 

537 4.3 Possible improvements to metamodel methods 

538 It is worth noting that our metamodeling approach, despite being advanced relative to many previous studies 

539 in estuarine and coastal regions, is relatively simple compared to methods developed and applied in other 

540 fields including climate modeling and statistics. To model the multiple outputs of our estuarine model, 

541 we employed what has been termed the “many single-output emulators” method (Conti and O’Hagan, 

542 2010). In this method, each output variable is predicted by a completely separate, independent metamodel. 

543 However, what Conti and O’Hagan (2010) termed “multi-output” emulators have been developed, which 

544 would allow the prediction of the multiple outputs of the estuarine model with a single metamodel (e.g., 

545 Conti and O’Hagan, 2010; Fricker et al., 2013). Similarly, we developed metamodels to predict numerical 

546 model output that was averaged over both time and space; however, methods for emulating model outputs 

547 that vary over time and space have been developed. Methods to emulate model output that varies over 

548 space have tended to apply dimensionality reduction methods (i.e., singular value decomposition/principal 

549 component analysis) to reduce the large number of grid/mesh points in the numerical model output into a 

550 smaller number of orthogonal values that can be easily emulated (e.g., van der Merwe et al., 2007). However, 

551 our approach of averaging the results over time and space makes the metamodels more interpretable, and 

552 is sufficient for our intent to assess the overall sensitivity of the bay physics to climate change. Finally, the 

553 Gaussian process metamodels used in this study fit nearly linear relationships between all of the inputs and 

554 outputs (Section 3.2; Figure 6). In this case, using simpler multiple linear regression metamodels would be 

555 adequate to emulate the numerical model output. We did not choose linear regression models for this study 

556 because the relative linearity of the results was not expected a priori. 

557 We expect that our study could also be improved by increasing the number of numerical model sim-

558 ulations used to fit the metamodels. Although the metamodels performed well in crossvalidation (Figure 

559 5), confidence intervals for some of the Sobol’ indices remained large relative to the values of the indices 



22 Andrew C. Ross et al. 

560 (Figure 7; Supporting information Section S4). We expect that increasing the numerical model sample size 

561 would increase the certainty regarding the metamodel predictions. Increasing the sample size would also 

562 help identify areas where the model response is nonlinear or where interactions between terms are present. 

563 A final enhancement to the approach used in this study would be to more robustly quantify the uncer-

564 tainty about the streamflow and tidal amplitude scales. For both scales, we assumed a triangular PDF with 

565 the mode and limits set to rough estimates based on the range of a set of numerical model simulations (for 

566 streamflow) and the range of different results reported in the literature (for tidal amplitude). In contrast, 

567 the PDF for sea level was obtained from Kopp et al. (2014), who combined a multitude of studies and model 

568 experiments that quantified uncertainty about different processes that affect mean sea level to create a final 

569 PDF. Although our simple approximations for streamflow and tidal amplitude uncertainty were sufficient 

570 to test the value of the metamodeling approach, more robustly quantifying the uncertainty about these 

571 parameters would yield more accurate estimates of projected changes and their uncertainties. 

572 5 Conclusions 

573 Given the assumed probability distributions for future streamflow, mean sea level, and tidal amplitude, 

574 future stratification, salinity, and estuarine circulation in Chesapeake Bay are all likely to be higher than 

575 present-day averages in 2050. However, uncertainty about all of the input factors contributes to significant 

576 uncertainty in the modeled future conditions. Mean salinity and vertical stratification, which are highly 

577 important for biogeochemistry and ecology in the bay, are strongly sensitive to tidal amplitude; however, 

578 the effects of uncertainty about tidal amplitude have been examined by only one other study (Lee et al., 

579 2017). Therefore, these results highlight the benefits of conducting a sensitivity and uncertainty analysis and 

580 the success of the metamodel approach. Future work should expand the analysis to examine more factors 

581 beyond the three used here, including factors related to model structural and parametric uncertainty, 

582 and include biogeochemical components. The results also showed that the system was simpler than we 

583 initially expected: interactions between the three factors examined were negligible, and the responses of the 

584 four variables studied were relatively linear. As a result, future sensitivity and uncertainty analyses may 

585 consider simpler methods that do not require the relatively time-consuming building of the metamodels 

586 and calculation of the Sobol’ indices. 
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819 Appendix A: Details of Gaussian process metamodel 

820 We initially treat the model output as the sum of one or more trend terms and a zero-mean Gaussian 

821 process: 

|
822 Y(x) = f(x) β + GP (0, c(xi, xj )) (7) 

823 where, for an x consisting of n points in d-dimensional space, f(x)| is a n × p design matrix for the trend 

824 term(s) and β is a p × 1 vector of trend parameters. For a simple intercept only (constant mean, or flat 

825 trend), p = 1 and f(x)| would be a vector of n ones and β the intercept. For a linear trend, these terms are 

826 analogous to multiple linear regression, with p = 1+ d, f(x)| a matrix with rows consisting of a 1 followed 

827 by the d coordinates of one point, and β representing the intercept and a slope for each dimension. 

828 The covariance function gives the covariance between the GP at two points xi and xj . Under the 

829 assumption that the model output is a relatively smooth function of its inputs (Roustant et al., 2012), we 

830 modeled the covariance with a squared exponential function: 

� �2 ! dY 
2 xi,k − xj,k 

831 c(xi, xj ) = σ exp − (8)
2θ2 

kk=1 

832 Here θk functions as a length scale that adjusts the distance of the decay of the covariance between model 

833 results at different values of factor k, and σ2 is a constant known as the process variance. 

834 The separate terms in Equation 7 can be combined into a single Gaussian process with non-zero mean, 

835 and, following Roustant et al. (2012), prediction of the numerical model output Ŷ  at a new point x∗ can 

836 be obtained from the expected value of the GP conditional on the n known values of the numerical model 

837 simulations Y at points x used to train the metamodel: 

h i 
ˆ | ˆ | −1 

838 E Y (x∗) = f(x∗) β + Cx∗ Cx (Y − Fβ̂) (9) 

|
839 where f(x∗)

|β̂  is the sum of the trend function(s) given estimated values of the coefficients β̂, C is a 

840 1 × n vector of the covariance between the output at the new point and the n training points, C− 
x 
1 is 

841 the inverse of the n × n covariance matrix of the training simulations, Y is a vector of the values of the 

842 numerical simulations used for training, and Fβ̂  is a vector of the values of the trend(s) at the training 

x∗ 
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843 points. Equation 9 shows that when numerical simulations are near the prediction point in parameter space, 

844 and therefore have high covariance, the deviation of the prediction from the trend will be influenced by the 

845 deviation of the nearby simulations from the trend. Far away from any numerical simulations used to fit the 

846 metamodel, the metamodel prediction will tend to revert towards the value from the trend functions only. 

847 Uncertainty about the outcome of the Gaussian process is also typically included when making predictions. 

848 See Roustant et al. (2012) for the formulation of the variance of the predicted values. Intuitively, variance 

849 is low near points where the numerical model has been run and is large at points far away from known 

850 model simulations. 
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